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INFLUENCE OF RESOLVING POWER ON MEASUREMENT

OF CORRELATIONS AND SPECTRA OF RANDOM FIELDS

by

Mahinder S. Uberoi and Leslie S. G. Kovasznay

Johns Hopkins University
Baltimore, Maryland

I. INTRODUCTION

1. The experimental techniques used to measure correlations and spectra of random field (e.g.
turbulence) use probes with finite extent in space and finite resolution in time. The correlations and spectra
are here considered as functions of space variables and time appsars as a parameter. We assume that the
probe gives faithful response in time and we are concerred with the influence of spatial resolving power
of the probe on the measurements of corrclations and spectra. Assuming linear response we can consider the
probe as a linear operator which maps one random field into another, The problem is to find functional re-
lations between the correlations and spectra of the mapped field to those of the original field. Ve con-
sider a three-dimensional random vector field with application to turbulence in view; however, from the

mathematical point of view the method can be gencralized to tensor fields of more than three variables.

e o= e = =~ =



ll. GENERAL TREATMENT

U, (%) is a random vector field, statistically homogeneous and infinite in extent. /I is the linear
operator corresponding to the probe which maps the random field U; (%) into another random field £; (%).

The operator is invariant under a skift in the origin of space.
MY =003
HU(E+E) =Yz +E)

We consider only those operators which can be expressed as a convolution on {; (%) with an arbitrary

xernel K (3), i.e.

MUz = JU(z+3) K(5dV(s)

Unless otherwise noted, all integrations are over the whole range of independent variables appearing in the
symbol for the volume element. The above definition of an operator includes almost all linear operators of

interest if we include Dirac function and its derivatives as possible kernels. *

Averages are then taken over the entire range of independent variables,

L U@dv(D

U () %, Tl v

mr o 7(:)
where V(r) is the volume of a sphere of radius 7. We assume < U (3) >, are all zero. Space average

may be a function of a parameter iike time, however, we omit reference to it to avoid an elaborate notation.

Rii(f—) and ,Bii(g”) denote correlations of the original and the mapped field respectively.

Rii(8) = <UD UYED % s 2" =5 + &

Bii(E) =<0 (2) 0i(x7)> gy,
E‘-i(Z) and rif(k—) are the spectra of U (3 and Q‘- (%) respectively,
) = .I_ 3 KF.E- 3
Ejk) =5 JRj(E) ™2 v (€)

— 1
r.. = —_ - T —
§) (k) gm J’B‘_i(é-)clk.fdy(f)

*The operator 1 ond the kenel K may be tenscrs of any rank. A case where tensor operators must be

used is the direct measurement of the statistical prop.rtics of vorticity by a probe of finite dimensions.
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with corresponding inverse relations
R,‘,’(E) = fEii(D e-ik'f dv (Z)
Bij(€) = fTuil) €HRE av (k)

We now investigate relations between Rii (€), ﬁi;’ (€), Ei,‘ (k) and r"i (%), the correlations and spectra
of the original and the mapped field.

ﬁi,' (8) = < () Oj(:;—')>av.

(&) = lim

Bij im o SR KoK Uz m Uz + €+ 9 avmaves)

The integration involving an averaging process and the two integrations with respect to ¢ and s can be

interchanged if K is zero outside of a finite domain or if U; (%) is bounded.
—_ 1 —
Bt &) = JJKmE (9 Uim oo JU(z + Uz + £+ 5 dV (3] V() Y (3)

=JIK KGR (E+5 DV (3)dV (1
let 75 =7

Bij(€) = JIK(S)K(s + DRy (E-m)dV (5)dV (7)
Integrate first with respect to &

and denote by ¥ (7)) the ‘auto-coirelation’ of the kernel K.

Y(T) = [K(EK(E + 7)dV(5)

(2.7)
then
Bij(£) = J W (7} Ry (& = 1) dV(m) (2.2)
Taking Fourier transform of the convolution of ¥(¥) and Rii (7)
G (k) =50k E;; (k) (2.3)
where _
ST = wm) etk Tav (7 (2.4)

Since {7T) is an even function, S (k) is real and even function of k. We call S (‘l;). the power sensitivity

spectrum of /I ; it gives the square of the eensitivity of the probe as a function of vector wave number.

} et By it e <o




It is a multi-dimensioral generalization of customary frequency response in circuit analysis. The principal
difference is in the fact that time has a preferred direction; on the other hand, space does not necessarily
have such a restriction. In circuit analysis K (s) is the impulse vesponse of the circuit and it acts only on

the ‘past’ of the signal.

lil. APPLICATION TO TURBULENCE MEASUREMENTS BY HOT-WIRE ANEMOMETER

3.1 Terminology for Isotropic Turbulence

We apply the considerations of the last section to isotropic turbulence. For this purpose we intro-
duce the customary terminology. U; (%) is the fluctuating velocity field, Rz (£) its correlation tensor, and
(k) its spectral tensor. If the turbulence is isotropic R‘I (€) can be expressed in terms of two scalar

functxons f(r) end g (1)."

< Uz oy, 8(7) = R, {o,r,0)

<U:>  f(r) =R, (r0,0)

1 av,

R‘ (,;:) —<U‘ av;f_@f{g—(zfi é‘} + g(r) Si]' ‘(;rz =‘ff + f: + f: 3.1

(5) is an even function of £ , and it follows that its Fourier transform E (k) is also an even and

real function of k. f(r) and g (1) are connected by the continuity equation of mcompresszble flow.

= of
f(r) - g(r) ? P

Total turbulence intensity

Zi U >y, = Riilo) = .I-E,‘,'(’-‘-)JV(E)

where repeated index means summation over the index. £; (k) is the spectral density of < 2ap, in
the wave-number space. ‘Three-dimensional’ spectrum E (k) is the spectral density of Z; < U? >, with

respect to wave-number magnitude

E (k) = [Ey (k) do(k)
where do(k) is the surface element of a sphere of radius k. If we apply the conditions of isotropy and
continuity equation of incompressible flow to &; (k) and maks use of the definition of E (k) we find?

k
E‘,()'a(:,[kzs ~ kik; ) 3.2

Commonly measured ‘one-dimensional’ spectrum is the Fourier tragsform of < U} > av, J (T)
<U> [fr) =R, (ro0) = [ITE, (F) &5k, dk, dk,
= st (kY e-ik‘r dk,

[N



St

where

- 1 E(k)
E (k) =SB, (k) dkodhy =1 (k2 +k?2)dk dk,

1 JE(k)

e R KR K 33

From which the inverse reiation follows:
d 1 dE‘(k‘)
B =R 3 & |k =
1 %y B8R t

3.2 Measurement of ‘One-Dimensional’ Velocity Spectrum

A hot wire of length 24 is set parallel to x,; it is sensitive to U, (z). The hot-wire output is pro-
portional to the integral of U(%Z) over a length 24 along the wire. We assume uniform wire temperature
distribution that results in uniform velocity response. However, non-uniform temperature distribution

offers no essential difficulty. The operator /I corresponding to the hot-wire is
%) 3AMG(E) = [Hds, UG +5) 8055 ) ds ds,

where & stands for a Dirac function. The operator f/maps the random field U(%) into anothe: random field
91(5:'). The point of view adopted here is that simultaneous measurements of U|(E) ere made at all points
in space and we represent these measurements by Q‘(E). The spectrum and correlation cf 01(5} are

related to the spectrum and correlation of U‘(E) by 2.2 and 2.3. We first calculate Y/(T), tke ‘auto-correla-
tion’ of the kernel K.

SYGE) =[U(E +3) K (5) dV (5)

s 8(s;s)fer —1<s <1
Ks) = 1

o otherwise

Y(7)=[KB)KG +7)dV(s)

ds

3

[t 1l
- ffs(s,:sz) 3(&‘,‘*'il','sz4"l'z)ds|dsz
4
=8(7,; ) (24~ 7, |) -24<7 <24 2.4
Stk ) the power sensitivity specurum of /lis the Fourier transform of y(7)

Stk) = &1 T 24- l'rale'ii; dv(r)

sin !:sl)z

=4(k

3



The response of the hot-wire is uniform for £ and %, and it is poor for large kA .The graphs of

JIK(s)ds ds , [[§ r)d7dT, and s(k ) are dre.on in Fig. 1.
The relation between I"”(/?) and E"(l_c) is given by 2.3

(k) 4(31;:151)6(;)
3

- sin kJI\E(k) ,
277( k, ) (k, +k3)fr

isotropic turbulence (3.2).
[l(k,) is the ‘one-dimensional’ spectrum of the mapped field.

k) =S 5T, (Bl dh,

. —ff(""" "31)25(—)(1:2 +2) dh d,

3

let o=V kzz +k3E and 153 be the new variables.

_2 s sinkl dk E(k)
k) =25 L it e
3 3

E(k
=12 (oW (1 /Fi—kf")k%)(k* - k) dk
1

where P ) J
sin y ly

W(ae) =— [©
(e) ﬂfo (y )2/&_5_—72‘

F(a)-=1 for a<<]

1
—~— a>>]
= for

F(a) has been numerically integrated and its graph is drawn in Fig. 2. Comparing 3.5b ard 3.3 we see that

3.5

3.5a

3.5b

3.6

for smalll the measured ‘one-dimensional’ spectrum I(k, ) approached the true ‘one-dimensienal’ spectrum

E (K, Jexcept for a factor 41* which is the steady state hot-wire response. For large [,

I k) o Ek)

—— =

I 7 Tk &k

\ Y- dk

3

3.7

The squared output of the probe is contiruously increasing with increasing length of the hot-wire; for the

limiting case of infinite wire length the squared out-put per unit length tends to a limit.

v JER) _dk
N e e
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For this limiting case the integral equation can be solved explicitly (see Appendix)

2k —dk___
B, Iy T Vi .
1
Al
% 1w B,
E (k) =7 j;:' o (K = k) dk

1 R -k Y ey —2E
=—2m'f1:—-——k L [, T €) Ve

1

integrating first with respect to k; then integrating twice by parts, we get

] o r;(f)fdé'

B = de, BT >

We see that either the ‘three-dimensional’ spectrum or the true ‘one-dimensional’ spectrum can be re-
covered from the spectrum measurad by a hot-wire of ‘infinite’ length. (By ‘infinite’ length we mean a
length much larger than any scale of tuzbulence). For this limiting case length to diameter ratio of the hot-

wire is large and the temperature distribution becomes strictly uniform and independent of the operating
conditions, as we have assumed here.

k2
It Efk)~k*exp [-1:2-]
0
k3 rik?
then E (k) ~ exp [ - Z—;—] and ffr) =¢ [- __4.0_]
0
where & _is a constant. In this case there is no relative distortion of the ‘one-dimensional’ spectrum or

the longitudinal correlation measured with a hot-wiie of finite length. Calculations show that

T, (k) {7
sBTE (k) 22k A lhoth <1

= 1 for koff, << ]

The relation between true and measured intensities of turbulence can be put in terms of the scale of
turbulence.

measured < U}> e
=

true Uy 2 24k o

L nd
erf (ko'f)) =;%—erf( 7 )

x

where

- L = fw e

[ 4

In these furmulaz we have taken account of the fact that the steady state response of the hot-wire is 442.
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3.3 Measurement of Lateral Velocity Correlation

The measured lateral corrclation 5, (o,r,0) is related to R,, (0,r,0) by 2.2.
Bu(&) = JY(7) R, (€~ T)dV (T)

Substitute the value of Y(7), from 3.4

Bil€, £, 69 =f|,r‘<2l Jfs(ry r)cat = |7 )R, (8= 7) dg dr,dr,
g1 =

Substitute the value of R”(z -7 ) from 3.1

B, fo:n0) =< UT> av. l(gz - ’Ts g (Vrt +“,,32—) dr, 3.10

f
| 7, , <2
This relation was first derived by Skramstad?.

If the wire length is much larger than the scale of burbulence, it may be considered effectively infinite, then
,B“(;,r,o) = [ 4 f‘?l-”x’g("rz +'r:)d'rs]<Uf > av.
0 .
ﬁill(r) :[4 I vre + 'r:)d'r,]<Uf >av.
o

This integral equation can be solved and the true correlation recovered from the measused correlation

(see Appendix)

1 d B+ &)
<y? ! ==t & o Py
Uy>avglr) =5 =1 " —rm— vz d¢ 3.11
let £=rtan 8 , then
1 d o
U>av.g(r)s~—— ["2( (rsecB)d 8 3.12
' An ’r 0o u

3.4 A Simple Approximate a'ethod of Hot-Wire Length Correction for LATERAL Correlation®

Measurements of lateral correlation g(r) are often made with hot-wires of inadequate resolving power.
%e give hors an aporoximate and easy method for comecting the measured correlation taking into account
variable temperature along the length of the hot-wire. Hot-wire temperature distribution can be approai-
mated by a purabola 2/3 - 2/3 (s,/1)* where s is the distance from the center of the wire along its length.

The factor 2,3 comes from normalizing the average respense to 412, The operator i corresponding to this

*This was worked out and used by L. S. G. Kovasznay during the war but has not been published.




hot-wire is

e = 4 prum s |2 250 ) | s
HU(Z bt [Z *3 37 - (s';sz)ds'dszdsa

Y(T) is the ‘auto-correlation’ of the kernel of the operator .

' - 24 l;_;ls‘lS('rl; 7)

o - T z
() -z% 2.4 -12 (21) +12 57
= H('ra) 8('rl ;1) 5 (cf 3.4)
B(&) = fU(T)R (- 7)dV(7)

Substitute the value of R”(E-— 7) from 3.1

£, (0r0) = <U? > av. ffz?f H(7) g( V7577 )4,
We normalize the measured correlation ,ano,r,o) to unity for r <o and denote it by g(r)

gm-ff g (AT ar,

fo H(7)g (T)dT,
let T2 =7); then

412
PEERARICT (r=)—-- s4 o) [glr) = gr° +n)]2,—

412
I il(n) S CORFTLY ll(n)

- 5{22' Aginl)

1-=2A4g(,l)
where 14[ Him) : ter)
Aglrl) = K i T’]2.f-
2 nem) 41

¥n

v

10
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we put

g(P) —gttn) x Lg(r?) - g +4?) ];3;

then I
A ,l x 2) 2 4 12
gnl) & Lelr) g+ 4] Nl
X lgt)-g(?)ta) ] x0.l
N g(R =g (R D)
X g (P - g (.4l

For the purpose of calculating the small correction & g (r,1) we have replaced the true correlation g (r?) by
the measured correlation g(r?). The procedure for applying this approximate length correction to the

measured correlation is:

1. Plot the measured correlation g (r?) against /%

2. Divide the abscissa of this new plot in equel intervals of length .41% (wire length 2/} and find
Ag (r,1) (See Fig. 3). The corrected correlation*

g(’) =S (f) [ I —Ag {O,l) ] + Ag (r)l)

As examples of the corrections involved, we have taken three simple correlations and compared them with

measured correlations in Fig. 4. Length of vhe wire is equal to the microscale in all three cases, i.e,

2l = Xand -2 = g"(o) This method of correcting the measured correlation is quite good if the length
X

of the wire is not very much larger than the microscale of turbulence.

If Ag (rl) d, 1 ._ri
_—&hY - const..—g— T ——gln) and g(r) =e)\z
8 dn ¥

In this case the simple method gives no correction for the measured correlation coefficient.

*If we assume uniform temperature along the wire then Og (r,l) = g (%) = g (* +.671)

11




According to this approximate method of correcting measured correlation, the relation between the

measured intensity and true intensity is,

d <U%>
v =1 _Mgfol) 21— [1-g(dl)]

2>
true <y .

xg(.63l)

4. APPLICATION TO SCALAR RANDOM (TEMPERATURE OR DENSITY) FIELDS

4.1 Terminolegy for Random Temperature or Density Fields

0(x) is tLe random temperature field, statisticaliy homogeneous and infinite in extent. We assume

that <8(x)>,

ap, 18 zero. Let T (€) and P (k) denote correlation and spectrum respectively of the

temperature.
T(E) =<6(x)0(x)>%, iz “x*+¢&

- 1 Id ~ LZ =
P (k) -EJT(f)c""de(é)

T(Z) =Bl (k)

P (k) is the spectral Jensity of <6%x) %, i the wave number space. ‘“Three-dimensional’ spectrum of

temperature G (k) is the spectral density of < 6%(x) >, With respect to wave number magnitude

Gx) = [P (k) do(k)

T (r,0,0) is the correlation usually measured. The ‘one-dimensional’ spectrum G, (%,) is the Fourier trans-
fomn: of T (r,0,0)

T (ro0) = [[fP (R)eiev dk, dk, d,
= J6, (ke "
where G, (i) = JfP (k) 2k, dk,

If the randam temperature field is statistically homogereous and isotropic

1 .G(k)

Gtk) T
G (k
Bl 4.1
2 l‘l k
12

T oo




The inverse relation is

¢ dG. (A
C(h) = =2k t_ﬂ] 4.2

4.2 Hot-Wire Measurements of Random Temperature or Density Fields
A hot-wire of length 2[ is set parallel to x. It is operated at low current such that the heating due to
the current is negligible, and it acts as a resistance thermometer. If the current flowing through the

wire is constant the voltage fluctuation of the wire is proportional to temperature fluctuation integrated

along the length of the wire. The operator !l corresponding to the hot-wire is
9(m) = [EsTL [IOG ¥5) B(s; s ds doids,
x -
3

Since the mapping operator is the name for temperature and velocity fields, the relations between
measured corrclations and spectra and the true correlations and spectra are the same for the two cases,
except that one is & scalar and the other a vector field. If we denowe by ’)"( k() the ‘one-dimensional’

spectrum measured with a hot-wire of length 21, then {cf 3.5a)
sinkiz -—
(k) =4 FEEL) olk)at gk
] ka 2 3

for isotronic temperature field,
P

I sinkl, Gk)
)= prenbdy 20

k, k2
let o ‘-"/ki*'k: and &, be the new variables, then
4 o sin kl dk G(k)
(k] E R L 3 — od .
i L e T 43
. — Gk
=2¢* 2 W <R —-g-—)dk 5.3a

where W (@) is the function introduced in section 2.3.

For small o, W(a) % 1 and comparison of 4.1 and 4.3 shows that the measured spectrum ¥, (k)
approaches the true spectrum G (k,) except fora factor ¢4 which is the steady state response of the

hot-wire.

1

Viz oLt JO S
WYk -k )2 /5 —3en
‘ BT

d

For large I,

= o (@ Gk) dk
k - 21 404
Yk I".T AT

t

13
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For this limiting case the integral equation can be solved explicitly (see Appendix)

G(k)k =k == 1 ® ! kdn’t
= —_ ky(k)| =——
—— fkl[ 7'()]/'=_~ : 4.4a
Also
1 o Gk)
T (7 ——dk
AT

1 adk o [E900)] £d€
%fk, e 5& -k?

Integrating first with respect to k£ and then once by parts we get

I £d¢
by o ) vz ayz 4.4b
If
kz
Glk)~ k? exp ["k—z— ]
°
then

k2
G k)~ exp [-Z_;_ ]

0
where k_is a constant, and for this case there is no relative distortion of ‘one-dimensional’ spectrum
measured with a hot-wire of finite length. Calculations show that
O

1
T ): 7;:__ cr[(lko) - 757;—2 [exp (—lzki)-'l] <]
1%y °

o

X Ifor I << 1

4.3 Shadowgraph Method of Measuring Correlation and Spectrum of Random Temperature or Density Fields*

/(%) is the fluctuating random density field, statistically homogeneous and infinite in exteit. We assume
that < p(z) >av. is zero. A portion of the field, lying between x, ~l and x +1 and extending t¢ inifnity in
the other two directions, is remove: from the rest of the ficld. Paralle! light after passing through thic slab
of the field is incident on a photographic plate (Fig. 5). The light arriving at the plate will be more or less
intense accerding to the distortion produced by density fluctuations acting as concave or convex lenses. The
shadowgraph depeads on the position of the aiab relative to x, axis. £ single shadowgraph gives the mapped
field for a fixed value of x, and the complete mapping consists of u continuous set of shadowgraphs, one for

each value of Xy

*This is the extension of the work reported by one of us in reference 9.

14




For small fluctuations of density, the refractive index u is a linear function of p, . =1 + cp, where
¢ is a constant. If the photographic plate is placed closer than the first focal point there are no singular
points on the photographic plate. The light intensity B(x,, x,, x,) falling on the plate compared to the
intensity B of the incident light is®

B, ~B(x, z, ;) < % T d9%p Rp

h » 9 = —— —
(5 %y 3 B(x, %, x,) x, 1 ( d xf * ) xi ) dx3 4.5

We have omitted the dimensional constant in the above relation. Since we have assumed statistically
homogeneous field, the statistical properties of h(x, x,, x,) with x, and z, as variables are independent

of X Let
ﬁ(gl’ 52’ 0)=< h(xl’ Xp x3)h(xl +'§|’ % +§z’ xa) > av.

This correlation can be obtaiied from the shadowgraph. For this purpose two slides are made from the
shadowgraph and placed face to face. The combined pattern is the same as for a single slide if the posi-
tion of two plates is matched. If t(x, x, x ) is the transparency of either plate, the transparency of two

plates displaced from ihe matched position by amounts & and &, is
t, Stz x,x)t(x + &, % £, x)
Let z{xl, %, xs) e, t A t(x‘, %, xs) where ¢ is the average transparency. The fluctuating trans-

parency & t(x‘, %, xa) =ch (x‘, %y X,/ where ¢ is a constant, if the photographic process is lirear.

Making use of this relation and taking averages of ¢, we find,
., 2
<'z>av. =& te <h(x!, xp xa)h (x‘ +§|’ xz+§z‘ x!) >av.

= 12 +c BlE, £, 0) 46

We can determine B(€, §,, O) by measuring combined transparency of two plates.

The operator /l which maps the rendom density field o(Z) into another random field A (%) is, (cf 4.5).

=)= oz = [t
Wz) = MpE)= I fppez +3) Vg (s) 8(s,) + 8"(s,) S(S‘)‘(ds‘dszds’

?
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W(T) is the ‘auto-correlation’ of the kernel of the operator /!
U(T) =Il+lff ;3" (s,) 8(s,) + 8" (s,) 8(8')£ )‘8" (o, 7)8(s, + 1)
+8" (s, * 1) 8(s, +'r|)$ ds, ds, ds,
YT =% §9(T ) 8() +8(7) 8(%) +28" (%) 8" (7,) 5 -1, 1) 4.7
S(k) is the power sensitivity spectrum of ./’ Iz <2
SE=J(m 17k TayT)

= q(k? +h2)? (sin_k l)2

3

4.8

The shadowgraph method responds to second derivatives of the density field; this accounts for the factor
2
(k% +k3) . Since the light passes through a path 2 (which corresponds to a hot-wire of length 2 in the

. 2
previous example of velocity spectrum measurement) the factor 4 (.‘f"_'i_lf.‘a.l.) appears in the sensitivity
spectrum, 3

The notation for correlation and spectrum of p(;) is the same as for random temperature {ield
8(;-) developed in Section 4,1, i.e.,

T(Z)= <p(x)p(x)>, = =z+&
P (k) =gls T @eiz‘EdV (%)
T(8)=[P (K€ av (k)
and G (k) is the ‘three-dimensional’ spectrum of o (x)
G(k) =JP (k) do (k)

If

P(E) = s [ B(E e R Eay (B)

thep

T'(k)=S(k) P (k)

16



2
"sl) P (k)

=4 (k2 + k:)z (sz]:z
for isotropic random density field

2 sink.l 1 G(k)

=4 (k2 + K2) (TJ",’ 7k 4,10
and
Gk k12 -ik€
B(E)= f ( )(k2 +i2) (s”' e T AV (k) 411
k,
k, l Gk k&, k€,
B¢, £,0) =—fff(s"' ( “C g g, i, dk, di,
k,
sink 1?2
If 1 is much larger than any scale of turbulence, then ( 3 ) acts almost like a Dirac function, i.e. we
— 3
G(k) G(k +k)
can replace ERE and integrate with respect to k.. Under this assumption
2 1 Ry
k € tk €
85,50 = [fo R ra) e w) S TR g g 4.12
l

Introduce polar coordinates,

& =rcos{; k =vcosy

&, Srsin §; k, Svsin Y

©
Br) =2ml [, v*G(v)] (vr)dv 4.12
and the inverse relation,
2 -'.L © b
viG(v) ’2"1 fo s B(r) I, (ir) dr 4,12

The measured correlation 8(r) end v? G (1) are Fourier-Bessel transforms of euch other. ® For v<<1;
v?G (1)~ v* making ihe first and the third moments of 3(r) always zero. The relation between the conven-

tional correlation T (£) and the correiation of the shedowgraph is given by eq. 2.2
B(E) =JW(n) T (€ ~7) d7

Subatitute  (7) from equation 4.7 and integrate with respect to 7, ond T,

8¢ 293¢
,3(5)'.[21(35‘ et ag Bg‘){zl |'r ) T(E-7) dr,
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3

For isotropic density fluctuations

BUETE) =2 [} (20 7) By T ENE 472 a,

2] Ve
Blr) =2, (21-7 ) B, T {7t +72) d7, 4.13

where A% is the bilaplacian in two dimensions for circularly symmetric case.

If I is much larger than any scale of density fluctuations, then

‘57(2 =4 ZLorr( e ad)ar, 4132
.’%(r_) = Ai & (r) 4.13b

r? log r is the elementary solution of bilaplacian in two dimensions’.

50 then the solution of 4.13b i~

If we assume that T(r) N

r— o

2

1
<€
T

1  po—— ¥
&) = 187 SO 52 BE) (r2 4+ £2 —2rEcos O)log Vrt +£2 ~2rf cos 6 £d 0dE

! I
= i 5 B(§) E[a7 v log r +§-‘2]d§+ .‘H-Irm RENE (r2+F)log & +r2 |dE

We note that first and third moments of S(£) are zero, using this fact:

! 1
W) == o [T BOE(" * E2)logr + &2 JE+ 20 7 HE) E[(r2 + £%)log £ +r7)d¢

substitute for ¢(r) from 4.13a

@(r)=4 [ T(Vr? +72)d7,
o

! o
“a’. BE) E[(r® + £) (log € -log r) +1* - £*]d€

18
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This integral equation can be solved for T(r) (see Appendix)

1 . ss
rPT) = - — (O [$(s) +¢'(s) s =
277,- s =r

! o o 2 -z < sds
" T IT B Elas” + £7)tog £ -log s) - 1o - 287 ] [aEAE

integrate first with respect to s.

sds

1
) == I BE)€d € ff [(3s% + &%) (log £ ~log s) +2s* =2&%) ;4T

T(r) = —f BE)E NE, 1) dE 4.14

where

NE D= % 15357 + E0flog £ ~log s) +257 -267] FH=

=Pt cos };—l- 3V oz 4.15
r

In oxder to get a feeling for the correlation measured from the shadowgraph, we assume that

22
G (k) ~k2exp [ - ; ] then it follows that the conventional correlation

T(r)~exp [ -(r/}\p) 2]
and

~ -": 21‘-1_’_‘ AT
Br)~ (1 }\’ 2(}\p)]exp[ (Xp)]

27T,
where A = - fo)

P T”()

it density micro-scale. These correlations are normalized to unity for r o and compared in Fig. 6.

and >\ is a characteristic length similar to turbulence micro-scale, we may call.

We denote by 7,(k,) the ‘one-dimensioual’ spectrum of the mapped field.
Y((k) = ST (k)dk dk

=1-i- IR +k2 )2 (s"' k=l)=5@dk dk,

For the case of ‘infinitely long’ light patl, we cen simplify this expression (cf. 4.12)

Nk =1 Je +k‘)G( k‘) dk,

dk
© )3
S ey
1

1

4.16
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7,(k,) is the ‘one-dimensional’ spectrum of the shadowgraph for the limiting case of ‘infinite’ light
path. This spectrum can be measured by scanning the shadowgraph with a beam of light. In the case of
low level wind-tunnel turbulence we can assume that density ; attern is carried along by the mean stream.
Parallel light after passing through the density field is allowed to fall through a narrow hole on a photo-
cell and the output of the photo-cell is analyzed by electrical filter. Usi. ; the relation 2 = Ut where U
is the mean velocity the measured time spectrum can be converted into space spectrum. ‘Three-dimen-

sional’ spectrum can be recovered from the measured spectrum by solving eq. 4.16 (see Appendix).

G(k =- 2 jo kvy(k)]' bt
()k=k| = ]-;-;l—l—;fk‘ (kv (k)] f‘/k_z—-_l-c? 417
Also
1 Gk
6 k) =252 "
o1, [5765)] €
ﬁfk fk “52 i % 4.18
integrate first with respect to &
] de____
lw_f [1,(€)] " d€ [€ sV pe
] 3K, - £ N T
G,(k) = l'le (6)[2§3k2 W 45‘1 —kl-———— d¢ 4.19

We can also use Schlieren instead of shadow method to measure correlation and spectrum of random
density field. If we assume that the light path is larger than scale of density fluctuations then true corre-
lation and spectrum of density fluctuetisns can be recovered from the measured quantities in the same way

as in the case of shadowgraph.

5. Calculation of Hot-Wire Length Effect for Some Simple Velocity and Temperature Spectra

In order to get an idea about the hot-wire length effect we assume that E(k) =4™. The ‘one-
dimensional’ velocity spectrum measured with a hot-wire of length 2! is compared with true spectrum in

Fig. 7. Explicit calculations are made as follows:

Pk n) =02 12 W7 k2 oln +3) (k2 -k di

1

~ © -
NI L2 RO @ -k dkfor Uk, <<

o k™ o sds o k* -k?

IR /ST
k'n p

2 12 - B 9 2 .
3 (2 ) 5.1
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4

for

e, >>1, Wi VE? k%) 1

and

Cy(kyin) =107 K-0ts) iz g2 g
1

li’("‘*‘i) @ ‘/s_ds

v

2 o (1+s)—’2l-+z
ko0F) 3ot
xi! B(—, —
2 (2 2 /

The point of intersection of asymptotes 5.1 and 5.2 is

n+]

3
B H
2 62— )

n
B(-:-z-,z)

]

A= 20k,

) [73) 1 A tl
Sl i

L
1"(2)

The graph of equation 5.3 is drawn in Fig. 8. The complete calculation of P‘(k‘; 1) can be made by

teking it in the form

in k 2412
rt(k,:lFsifM(————’—sm betkith) g g
n

273
ky (R EZH YV

5.2

5.3

5.4

5.5

=_I__ff(sin kal)zdkzdks —i{ sin I‘sl,zdkzdka
27 k3 (kf +k: i*l::)"/z 2n k, ’ (/:f +k:+k§)’/z
! k 9l
=+
2n 6w 31:,
where
- J.-’,(sin I‘sl.z dkzdk:

/
ky 7 (kI HED +R2)?
sinkJl . dk
=2, —3p 3

NG RV

3

sin k1
We cvaluate this integral using Parseval’s relation. Take Fourier transforms of ( 2__'-,‘2 and
H
5 and integrate the product of the transforms with respect to the variable of trensforwation.

AR H
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V= 2-lx ] |
"/;2( P )‘)_z'k ] ‘ x

1=2 2
Lo

= 7T(2l/kf - I/ksi +1/k? exp [-2lk'])
Substitute the value of I in 5.5

11 l
r"(k'; 1) =§'(P T2 e [ =21k, 1) 5.6
1 1

I-; (k,; n) for n=3,5,7 can be obtained by differentiating I“, (k,; 1) with respect to k,

ol (k; 1) _
——',-é-—l-————" 5k, T (k,;3) 5.7

1

The ratio of measured spectrum [7 (% ;n) to the true spectrum at the point of intersection of the two
asymptotes of [ (k ;n) is plotted against n for n =1,3,5.... in Fig. 9. A smooth curve is drawn through
these points. Knowing the asymptotic value of T} (k ;n) for 2lk (<< 1 and 2lk, >> I and its value at the

intersection of the asymptotes we can dra approximately the complete curve of [ (% ,n) for all n. Graphs

of the ratio of mezsured spectrum to the true spectrum are drawn against the non-dimensional variable

2k  in Fig. 10.

If we assume that G(k) =k™® then the ‘one-dimensional spectrum of temperature measured with a hot-

wire of length 2! is

Y, (k,; n) =202 f,: Wer YR k) nt ) dk
1

x20% fy K di for 1, <<1
i

2

x2= kB 58
a1
Vi gt) e
For large lk, W K~k ) x 1V 2
=Ry
o K (n+1)
and %, (ks n) X 2L g Vpr_yr dk
~ Ik (nt1) _ii_é_—
~Th [|+s]—n—;—z
0
I o+
xlk (VB 59
! (2 2 )
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»0.,\..,._._,_"”...,

The point at which asymptotes 5.8 and 5.9 meet is

1 n+ts

A =2k, "nB(;-, —2—ﬂ

reyr&
=1 2

nt2

X

r'(

AT
T‘(—'_;'-) 5.10

Equations 5.3 and 5.10 are identical except for a factor of 2. Graph of equation 5.10 is drawn against

against n in Fig. 8.
The complete calculation of %, (k,; 1) can be made by taking it in the form

1 .. osink,l? dk , dk
k1) =— 3 - 2.3

=2—ﬁ -LeL exp [ ~21k,]
T SO 3 '
as evaluated previously.
% /k|;n) forn = 3,5, Tereenes eeervesnaass can be obtaired by differentiating y‘{k‘;l)with respect to &,
E’sf, (k; 1) _
Y =3k (k3

|

The ratio of measured spectrum Y, (k. a) to the true spectrum at the point of intersection of the two
asymptotes of ¥, (k ; n) is plotted against n in Fig. 9. ¥, (k,; n) for values of n other than 1,3, 5.....

is obtained by extrapolution as in the case of velocity spectrum.

Graphs of the ratio of the true spectrum to the measured spectrum o, _.awn against the non-

dimensional variable 21k in Fig. 11.
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APPENDIX

Solution of th2 integral equations

- o ¥(6) df
O T e

p(x) = f:q(“x2+§z) d&

and

Equation A2 can be reduced to Al by the transformation y = Yx? + £°?

For the solution of Al, let & =xcsc &
1

then Y(x) '—'-—fo”/z @(xecsc 6)d 6
%

This equation can be reduced to Schl'bmlicl]) equation by the transformation

x =y

) = $(y) and o) = ¢0y)
y

I(y) = [Vedly sin 6)d6

let

Solution of Schlomlich equation is®

2 2 .
y) ==[P(y)] _ t—y L Jly sin6)dO
m ySo m
or in terms of the original variables

- 2 _ 2 - » '
¢(x) ;[x \l’(x)]x i ;x B [xcsc9¢ (<csc 6)]

w

£d¢

- 2 «© = !
$lx) = - — 1] [ey(e)] Vet

Alternatively,

o ole)de
"’""f e/etgt

x

T e AR -

Al

A2

esctfd @
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can he solved by the transformation

1

A
_ 1
[ —
x

YR
b(€) -¢(7;5——|) 5(51)
bix) =9 =) =9 (%)

Substituting these in our equation we get Abel integral equation.

Its solution i88:

or in terms of original variables

q3(x)=”2xz d x f© ¢——7-r--1(§)d§
T E x £V E-x
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